Smart Lab Coat for the Dental Practitioner

Grace Olsen
Dr. Susan Brilliant
Dr. David Primeaux
October 10th 2007

Overview of Presentation

- Motivation
- Background Ergonomics
- Background Computer Science
- Prototype
- Early Data and Analysis
- Future Work

Motivation

- Needs of the VCU School of Dentistry
 - DentSim and Technology in VCU School of Dentistry
 - Current training given in conjunction with cavity preparation training
 - Instructor availability
 - Student perceptions

DentSim Simulator

Background - Ergonomics

- Ergonomics and Dentistry
 - Work-related musculoskeletal disorders (WMSDs)
 - Causes of WMSDs in dentistry
 - Prolonged static postures
 - Costs of WMSDs
 - Medical costs and lost work
 - Changes in dentistry to alleviate WMSDs
 - Four-handed and seated dentistry
 - Chair design and layout of workspace

Ergonomics in Dentistry

- Ways to correct posture:
 - Holistic approach
 - Stretching
 - Taking breaks
 - Adjusting chair and patient's chair
 - Core strength training
 - PAI System
 - Loupes
 - Dental chair design
 - Workspace environment

Posture Assessment Instrument

Background - Ergonomics

- Traditional Ergonomics Methods:
 - Qualitative approaches
 - Observation
 - Surveys and Questionnaires
 - Quantitative approaches
 - Goniometers and image analysis
 - EMG recordings

Goniometer

Background - Engineering

- Motivations for measuring human movement
 - Ergonomics / Posture
 - Gait Analysis / Medical Applications
 - Sports Analysis
 - Animation
- Methods of recording motion:
 - EMG
 - Video and Image Analysis
 - Motion Capture
 - On Body Sensors

Background -Measuring Human Movement

- 1. Data Collection
- 2. Data Filtering
- 3. Data Analysis
- 4. Feedback to user(s)

Background - Data Collection: Sensors

- On Body Sensors
 - Accelerometers /Inclinometers
 - Gyroscopes
 - Pressure Sensors
 - "Smart" Fabric
 - Magnetometers
 - Potentiometers

SCAT121T Series 2-Axis Inclinometer

Background - Filtering of Data

- Two Motivations:
 - Feature extraction
 - Noise reduction
- Methods of Filtering:
 - Fourier Transformation
 - Discrete Wavelet Transformation and Wavelet Packet Decomposition
 - Complementary Quaternion Filters
 - Discrete-time complementary Kalman filters
 - Combination of methods above

Background - Data Analysis

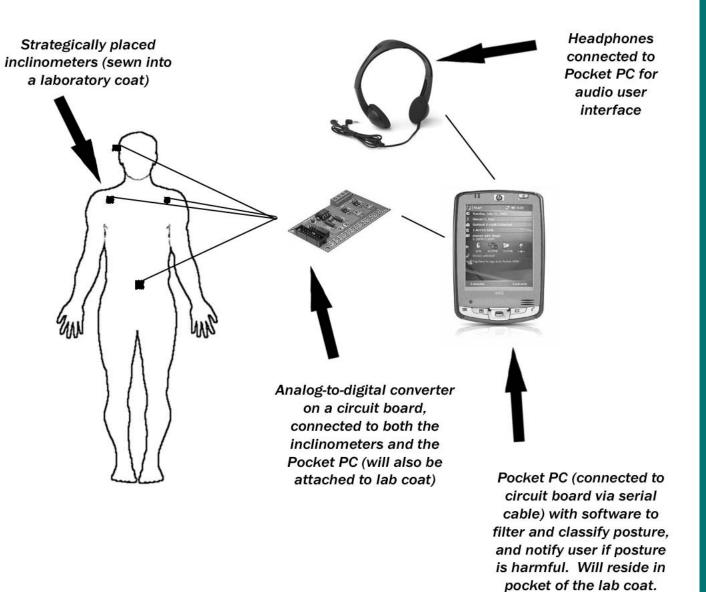
- Classification of movement based on extracted features:
 - Statistical Methods
 - Neural networks
 - Clustering algorithms
 - Combinations of existing machine learning techniques

Background - User Interfaces

- Real time vs. non-real time systems
- Feedback to user vs. feedback to experts
- Feedback to correct movement or position vs. feedback to be further analysed by experts or other systems
- Feedback to system localized on user vs. feedback to a centralized source

Posture Measuring Prototype

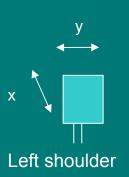
- A system to measure and classify posture
 - Accurate
 - Non-invasive
 - Inexpensive
 - Customized for each user
 - Unobtrusive
 - Real-time classification and feedback

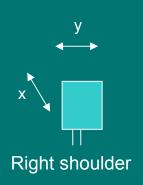

Good Posture

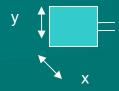
Poor Posture

Posture Measuring Prototype

- Hardware:
 - Multiple Inclinometer Sensors
 - Analog to Digital Converter
 - Pocket PC(?)
 - User Interface


Posture Measuring Prototype


Software:


- Interpreting changes in incline from inclinemeters
- Calibration
- Filtering
- Classification
- Notification / User Interface

Initial Data Collection

- •Data collected in one to three minute time intervals (approx. 1 reading per second)
- •Five different positions recorded: nominally "good", leaning left, leaning right, leaning forward, leaning back, slouching
- Trained on an ANN

Middle of lower back

Initial Data — Trial 1

	Back X	Back Y	R. Shoulder X	R. Shoulder Y	L. Shoulder X	L. Shoulder Y
"Correct" Position – Actual Data	1.171°	55.256°	52.583°	35.972°	68.528°	-2.354°
Difference from "Correct" <u>Position:</u>						
Leaning Forward	+0.659°	+2.894°	+14.980°	-1.875°	+18.299°	-7.950°
Leaning Left	+4.271°	-1.353°	+5.487°	+9.972°	+15.000°	-16.309°
Leaning Right	-8.929°	-4.388°	+18.465°	-17.434°	+20.988°	+12.169°
Slouching	-4.327°	-10.114°	+13.592°	-6.641°	+17.362°	-1.012°
Leaning Back	-3.089°	-8.110°	-1.109°	+0.119°	-1.493°	+4.436°

Initial Data — Trial 2

	Back X	Back Y	R. Shoulder X	R. Shoulder Y	L. Shoulder X	L. Shoulder Y
"Correct" Position – Actual Data	5.081°	57.987°	45.784°	33.318°	51.881°	0.974°
Difference from "Correct" Position:						
Leaning Forward	+2.068°	+9.426°	+17.502°	+4.636°	+20.702°	-8.663°
Leaning Left	+6.165°	+1.994°	-0.146°	+16.022°	+7.603°	-14.928°
Leaning Right	-14.227°	+6.284°	+19.181°	-18.589°	+18.775°	+18.208°
Slouching	-5.607°	-6.282°	+11.204°	+2.066°	+14.711°	-3.992°
Leaning Back	-6.628°	-2.053°	-13.858°	+4.577°	-11.799°	+6.807°

Initial Data — Trial 3

	Back X	Back Y	R. Shoulder X	R. Shoulder Y	L. Shoulder X	L. Shoulder Y
"Correct" Position – Actual Data	-11.05°	19.19°	34.31°	-11.7°	32.33°	-7.06°
Difference from "Correct" Position:						
Leaning Forward	-3.23°	+6.15°	+13.76°	+3.31°	+15.97°	-2.93°
Leaning Left	+9.99°	+4.16°	+7.89°	-15.14°	+8.84°	-17.22°
Leaning Right	-14.25°	+2.84°	+12.07°	+25.29°	+10.97°	+26.4°
Slouching	-1.16°	-8.42°	+5.67°	+3.89°	+6.65°	+0.77°
Leaning Back	+1.28°	-1.69°	-2.55°	+1.21°	-4.74°	+4.75°

Initial Analysis

Initial Results:

- 77% of trained data classified correctly as "good", 64% of test data classified correctly as "good"
- No false positives except leaning forward
 - 88% of all leaning forward test data was classified as "good"
- 99.8% of all other "poor" postures correctly identified as "poor"
- Data from another session has mixed accuracy

Future Work

- Portability Pocket PC
- Filtering
- Analysis
- Real time testing of system
- User interface design
- Testing on dental students

Questions?

References

- Valachi B, Valachi K. "Mechanisms leading to musculoskeletal disorders in dentistry" in <u>Journal of the American Dental Association</u>, vol. 135 no. 10, 1344-50, 2003.
- •Thornton LJ, Stuart-Buttle C, Wyszynski TC, and Wilson ER. "Physical and psychosocial stress exposures in US dental schools: the need for expanded ergonomics training" in <u>Applied Ergonomics</u>, vol. 35 no. 2, 153-7, 2003.
- Simmer-Beck, M. and Branson, B. "Posture Perfect" in <u>Dimensions of Dental Hygiene</u>, vol. 3, no. 14, 2005.
- "National Occupational Research Agenda for Musculoskeletal Disorders." <u>National Institute for Occupational Safety and Health</u>. 01 Jan. 2001. U.S. DEPARTMENT OF HEALTH AND HUMAN SERVICES. 3 July 2007 http://www.cdc.gov/niosh/pdfs/2001-117.pdf>.
- Buchanan, Judith, "Experience with Virtual Reality-Based Technology in Teaching Restorative Dental Procedures" in <u>Journal of Dental Education</u>, vol. 86, no. 12, 1258-1265, 2004.
- Valachi, B., Valachi, K. "Preventing musculoskeletal disorders in clinical dentistry" in <u>Journal of the American Dental Association</u>, vol. 134, 1604-1612, 2003.
- •Finsen L, Christensen H, Bakke M. "Musculoskeletal disorders among dentists and variation in dental work" in <u>Applied Ergonomics</u>, vol. 29, no. 2, 119-25, 1998.
- Branson BG, Williams KB, Bray KK, McIlnay SL, Dickey D. "Validity and Reliability of a Dental Operator Posture Assessment Instrument (PAI)" in <u>Journal of Dental Hygiene</u>, vol. 76, no. 4, 255-61, 2002.
- Liss, G. M., Jesin, E., Kusiak, R. A., White, P. "Musculoskeletal Problems Among Ontario Dental Hygienists" in <u>American Journal of Industrial Medicine</u>, vol. 28, 521-540, 1995.
- Dougherty, M. "Ergonomic principles in the dental setting: Part 1" in <u>Dental Products Report</u>, 2001.
- Bishop, C. M. Neural Networks for Pattern Recognition. Oxford U.K.: Oxford University Press, 1995.
- •Ripley B.D. Pattern Recognition and Neural Networks Cambridge U.K.: Cambridge University Press, 1996.
- •Plamondon, A., Delise, A., Larue, C., Brouillette, D., McFadden, D., Desjardins, P., Lariviere, C. "Evaluation of a hybrid system for three-dimensional measurement of trunk posture in motion." In Applied Ergonomics, vol 38, 697-712, 2007.
- Gallagher, A., Matsuoka, Y., Ang, W. "An Efficient Real-Time Human Posture Tracking Algorithm Using Low-Cost Inertial and Magnetic Sensors." in IEEE/RSJ International Conference on Intelligent Robots and Systems, Proceedings, vol. 3, 2967 2972, 2004.
- •Mantyjarvi, J., Himberg, J., Seppanen, T. "Recognizing Human Motion with Multiple Acceleration Sensors." in 2001 IEEE International Conference on Systems, Man, and Cybernetics, vol. 2, 747 752, 2001.
- Lou, E., Bazzarelli, M., Hill, D., Durdle, N. "A Low Power Accelerometer Used to Improve Posture" in Canadian Conference on Electrical and Computer Engineering, vol. 2, 1385 1389, 2001.
- Bouten, C., Sauren, A., Verduin, M., Janessen, J. "Effects of placement and orientation of body-fixed accelerometers on the assessment of energy expenditure during walking." in Medical and Biological Engineering and Computing, vol. 35, 50-56, 1997.
- •Minnen, D., Starner, T., Ward, J.A., Lukowicz, P., Troster, G. "Recognizing and Discovering Human Actions from On-Body Sensor Data." IEEE Conference on Multimedia and Expo, 1545-1548. 2005.
- Luinge, H. J. and Veltink, P. H. "Inclination Measurement of Human Movement Using a 3-D Accelerometer with Autocalibration." in IEEE Transactions on Biomedical Engineering, vol. 53, 1385-1393. 2006.
- Huynh, T. and Schiele, B. "Analyzing Features for Activity Recognition." in Proceedings of the 2005 Joint Conference on Smart Objects and Ambient intelligence: innovative Context-Aware Services: Usages and Technologies, vol. 121, 159-163. 2005.

References

- Allen, F., Ambikairajah, E., Lovell N., Celler, B. "Classification of a known sequence of motions and postures from accelerometry data using adapted Gaussian mixture models." in Physiological Measurement, vol. 27, 935-951, 2006.
- Vehkaoja, A., Zakrzewski, M., Lekkala, J., Iyengar, S., Bajcsy, R., Glaser, S., Sastry, S., and Jafari, R. "A Resource Optimized Physical Movement Monitoring Scheme for Environmental and on-Body Sensor Networks." in Proceedings of the 1st ACM SIGMOBILE international Workshop on Systems and Networking Support For Healthcare and Assisted Living Environments, 64-66. 2007.
- *Zhu, R., and Zhou, Z. "A Real-Time Articulated Human Motion Tracking Using Tri-Axis Inertial/Magnetic Sensors Package." in IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol. 12, 295-302, 2004.
- Young, A.D., Ling, M.J., Arvind, D.K. "Orient-2: A Realtime Wireless Posture Tracking System Using Local Orientation Estimation." in Proceedings of the 4th workshop on Embedded networked sensors, 53-57, 2007.
- Bazzarelli, M., Durdle, N., Lou, E., Raso, J. "A Low Power Portable Electromagnetic Posture Monitoring System." in IEEE Instrumentation and Measurement, 619-623, 2001.
- Wong, W.Y., Wong, M.S, Lo, K.H. "Clinical applications of sensors for human posture and movement analysis." in Prosthetics and Orthotics International, vol. 31, 62-75, 2007.
- Engin, M., Demirag, S., Engin, E., Celbi, G., Ersan, F., Asena, E., Colakoglu, Z. "The classification of human tremor signals using artificial neural network." in Expert Systems with Applications, vol. 33, 754-761, 2007.
- Lanningham-Foster, L., Jensen, T., McCrady, S., Nysse, L., Foster, R. Levine, J. "Laboratory Measurement of Posture Allocation and Physical Activity in Children." in Medicine and Science in Sports and Exercise, vol. 37, 1800-1805, 2005.
- Foerster, F. Smeja, M., Fahrenberg, J. "Detection of posture and motion by accelerometry: a validation study in ambulatory monitoring." in Computers in Human Behavior, vol. 15, 571-583, 1999.
- •Fahrenberg, J., Foerster, F., Smeja, M., Muller, W. "Assessment of posture and motion by multichannel piezoresistive accelerometer recordings." in Psychophysiology, vol. 34, 607-612, 1997.
- Iso, T. and Yamazaki, K. "Gait Analyzer based on a Cell Phone with a Single Three-axis Accelerometer." in Proceedings of the 8th conference on Human-computer interaction with mobile devices and services, vol. 159, 141-144, 2006.
- Lee, R., Laprade, J., Fung, E. "A real-time gyroscopic system for three-dimensional measurement of lumbar spine motion." in Medical Engineering and Physics, vol. 25, 817-824. 2003.
- Mathie, M.J., Basilakis, J., Celler, B.G. "A System for Monitoring Posture and Physical Activity Using Accelerometers." in Proceedings of the 23rd Annual EMBS International Conference, 3654-3657. 2001.
- Nevins, R. Durdle, N., Raso, V. "A Posture Monitoring System Using Accelerometers." in Proceedings of the 2002 IEEE Canadian Conference on Electrical and Computer Engineering, 1087-1092. 2002.
- Lyons, G.M., Culhane, K.M., Hilton, D., Grace, P.A. Lyons, D. "A description of an accelerometer-based mobility monitoring technique." in Medical Engineering and Physics, vol. 27, 497-504. 2005.
- *Burchfield T.R. And Venaktesan, S. "Accelerometer-Based Human Abnormal Movement Detection in Wireless Sensor Networks." in Proceedings of the 1st ACM SIGMOBILE international workshop on Systems and networking support for healthcare and assisted living environments, 67-69. 2007.

References

- Lee, R.Y.W. "Kinematics of rational mobilisation of the lumbar spine." in Clinical Biomechanics, vol. 16, 481-488. 2001.
- *Bull, A.M.J. And McGregor, A.H. "Measuring spinal motion in rowers: the user of an electromagnetic device." in Clinical Biomechanics, vol. 15, 772-776. 2000.
- Tong, K. and Granat, M. H. "A practical gait analysis system using gyroscopes." in Medical Engineering and Physics, vol. 21, 87-94. 1999.
- •Motoi, K., Tanaka, S., Nogawa, M., Yamakoshi, K. "Evaluation of a new sensor system for ambulatory monitoring of human posture and walking speed using accelerometers and gyroscope." in SICE Annual Conference in Fukui, 1232-1235. 2003.
- Lorussi, F. Schilingo, E.P., Tesconi, M. Tognetti, A. De Rossi, D. "Wearable Sensing Garment for Posture Detection, Rehabilitation and Tele-Medicine." in Proceedings of the 4th Annual IEEE Conference on Information Technology Applications in Biomedicine, 287-290. 2003.
- *Whitman, L., Jorgensen, M., Hathiyari, K., Malzahn, D. "Virtual Reality: Its Usefulness for Ergonomic Analysis." in Proceedings of the 2004 Winter Simulation Conference, vol. 2, 1740-1745, 2004.
- Mutlu, B., Krause, A., Forlizzi, J., Guestrin, C., Hodgins, J. "Robust, Low-cost, Non-intrusive Sensing and Recognition of Seated Postures." in Proceedings of the 20th annual ACM symposium on User interface software and technology, 149-158, 2007.
- Omlor, L. and Giese, M.A. "Extraction of spatio-temporal primitives of emotional body expressions." in Neurocomputing, vol. 70, 1938-1942. 2007.
- Mayagoitia, R.E., Nene, A.V., Veltink, P.E. "Accelerometer and rate gyroscope measurement of kinematics: an inexpensive alternative to optical motion analysis systems." in Journal of Biomechanics, vol. 35, 537-542. 2002.
- Bonato, P. "Wearable Sensors/Systems and Their Impact of Biomedical Engineering." in IEEE Engineering in Medicine and Biology Magazine, vol. 22, 3, 18-20. 2003.
- DeRossi, D., Lorussi, F., Mazzoldi, A., Scilingo, E.P. "Active Dressware: Wearable Proprioceptive Systems Based on Electroactive Polymers." in The Fifth International Symposium on Wearable Computers, 161-162. 2001.
- DeRossi, D., Lorussi, F., Mazzoldi, A., Orsini, P., Scilingo, E.P. "Monitoring Body Kinematics and Gesture Trought Sensing Fabrics" in 1st Annual International IEEE-EMDS Special Topic Conference on Microtechnologies in Medicine and Biology, 587-592, 2000.
- Mannion, A. and Troke, M. "A comparison of two motion analysis devices used in the measurement of lumbar spinal mobility." in Clinical Biomechanics, vol. 14, 612-619. 1999.
- •Giansanti, D. Mecellari, V., Maccinoi, G., Cappozzo, A. "Is it Feasible to Reconstruct Body Segment 3-D Position and Orientation Using Accelerometric Data?" in IEEE Transactions on Biomedical Engineering, vol. 50, no. 4, 476-483. 2003.
- Ochi, F., Ave, K., Ishigami, S., Otsu, K., Tomita, H. "Trunk Motion Analysis in Walking Using Gyro Sensors." in Proceedings 19th International Conference IEEE/EMBE, vol. 4, 1824-1825. 1997.
- •Guangyan, L. and Buckle, P. "Current techniques for assessing physical exposure to work-related musculoskeletal risks, with emphasis on posture-based methods." in Ergonomics, vol. 42, 674-695. 1999.

Images

- dentsim.jpg: Multimedia Simulation Clinic. 2007. <u>Case Western Reverse University School of Dental Medicine.</u> 08 Sept. 2007 http://dental.case.edu/admissions/dmd/images/dentsim5full.jpg
- posture1.jpg: Loupes. 2007. <u>Royal Dental Group</u>. 08 Sept. 2007 http://www.royaldentalgroup.com/images/posture1.jpg
- posture2.jpg: Loupes. 2007. <u>Royal Dental Group</u>. 08 Sept. 2007 http://www.royaldentalgroup.com/images/posture2.jpg
- goniometer.jpg: Occupational Therapist Assistant/Physcial Therapist Assistant. 2007. <u>Student</u>
 <u>Services SIAST</u>. 08 Sept. 2007. http://www.siast.sk.ca/success/images/graphics/goniometer.jpg
- PAI.jpg: SIMMER-BECK, M. and BRANSON, B. "Posture Perfect", <u>Dimensions of Dental Hygiene</u>. 2007. Belmont Publications, Inc. 08 Sept. 2007 http://www.dimensionsofdentalhygiene.com/uploadedImages/Magazine/2005/05_May/Features/14a.jpg
- loupes.jpg: Preface Dental Loupes by SwissLoupes. 2007. <u>SandyGrendel</u>. 08 Sept. 2007 http://www.surgical-telescopes.com/images/dentist1.jpg
- inclinometer.jpg: SCA103T Series. 2007. <u>VTI Technologies</u>. 08 Sept. 2007 http://www.vti.fi/en/products-solutions/products/inclinometers/sca111t-121t-modules/>